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Abstract

Background: Generative adversarial networks (GAN) can produce images of improved quality but their ability to
augment image-based classification is not fully explored. We evaluated if a modified GAN can learn from magnetic
resonance imaging (MRI) scans of multiple magnetic field strengths to enhance Alzheimer’s disease (AD)
classification performance.

Methods: T1-weighted brain MRI scans from 151 participants of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), who underwent both 1.5-Tesla (1.5-T) and 3-Tesla imaging at the same time were selected to construct a
GAN model. This model was trained along with a three-dimensional fully convolutional network (FCN) using the
generated images (3T*) as inputs to predict AD status. Quality of the generated images was evaluated using signal
to noise ratio (SNR), Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and Natural Image Quality
Evaluator (NIQE). Cases from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL, n = 107)
and the National Alzheimer’s Coordinating Center (NACC, n = 565) were used for model validation.

Results: The 3T*-based FCN classifier performed better than the FCN model trained using the 1.5-T scans.
Specifically, the mean area under curve increased from 0.907 to 0.932, from 0.934 to 0.940, and from 0.870 to 0.907
on the ADNI test, AIBL, and NACC datasets, respectively. Additionally, we found that the mean quality of the
generated (3T*) images was consistently higher than the 1.5-T images, as measured using SNR, BRISQUE, and NIQE
on the validation datasets.

Conclusion: This study demonstrates a proof of principle that GAN frameworks can be constructed to augment AD
classification performance and improve image quality.
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adversarial network, Fully convolutional network
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Introduction
Rapid improvements in neuroimaging techniques such
as magnetic resonance imaging (MRI) have led to
more sensitive methods of identifying neurodegenera-
tion associated with Alzheimer’s disease (AD) path-
ology [1]. Evaluation of the pathophysiological
changes on MRI could potentially facilitate the dis-
covery of new treatments and help patients, families,
and clinicians. Accurate detection of AD using MRI is
contingent on the signal-to-noise ratio (SNR) of the
scan data, which is directly connected to instrument-
related parameters such as magnetic field strength. As
such, scanner improvements can lead to increased
sensitivity to detect subtle biological changes. Never-
theless, image-based screenings of at-risk individuals
are usually carried out by relying on a single scanner
technology. This means that the ongoing national
studies such as the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [2], the Australian Imaging, Bio-
marker & Lifestyle Flagship Study of Ageing (AIBL)
[3], and the National Alzheimer’s Coordinating Center
(NACC) [4], dedicated to detection of AD and track-
ing AD progression, can allow us to generate AD
classification models with accuracies that are bounded
by advancements in the scanners.
One possible solution to partially address this issue

is using generative adversarial learning [5], which is
an emerging technique in machine learning that in-
corporates a system of two neural networks that com-
pete with each other in a zero-sum game framework.
Since its introduction, there has been a surge of
interest in the application of GAN frameworks related
to the brain. Some of the applications include image
generation with improved properties such as achieving
super resolution or better quality [6–11], data aug-
mentation [12–14], segmentation [9, 13–16], image
reconstruction [17–20], image-to-image translation
[21–24], and motion correction [25, 26]. While these
important studies have demonstrated the exciting pro-
spect of using GAN architectures, there is a limited
amount of work that has focused on utilizing the gen-
erated images for subsequent tasks such as disease
classification [27]. Here, we evaluated if a generative
adversarial network (GAN) can be developed to aug-
ment performance of a classifier trained using the
generated images. To achieve this goal, we processed
brain MRI scans of multiple magnetic field strengths
(1.5 Tesla (1.5 T) and 3 Tesla (3 T)) from the ADNI
dataset and also obtained access to 1.5-T MRI scans
from the AIBL and NACC datasets. Using these data,
we addressed the following objective. The deep learn-
ing framework needs to more accurately predict the
class label than what one could achieve using the ori-
ginal scans. To achieve this, we trained a GAN model

using 1.5-T and 3-T scans obtained around the same
time on the same set of individuals. Using well-
known image quality metrics, we compared the ori-
ginal scans and the generated images. We then used
the generated images to construct a fully convolu-
tional network (FCN) that discriminated between
cases who had AD from those who had normal cog-
nition. For comparison, we also generated an inde-
pendent FCN model using the original 1.5-T scans to
predict AD status. Validation of the FCN models was
performed using data from the AIBL and NACC
studies.

Materials and methods
Study population and MRI scan parameters
We obtained access to T1-weighted MRI scans from the
ADNI (n = 417), AIBL (n = 107), and NACC (n = 565)
cohorts (Table 1). For a subset of the ADNI data (n =
151), both 1.5-Tesla (1.5-T) and 3-Tesla (3-T) scans
taken at the same time were available, and 1.5-T scans
were available from the other cohorts. All the MRI scans
considered for this study were performed on individuals
within ±6months from the date of clinical assessment.
ADNI is a longitudinal multicenter study designed to

develop clinical, imaging, genetic, and biochemical bio-
markers for the early detection and tracking of AD [28].
AIBL, launched in 2006, is the largest study of its kind
in Australia and aims to discover biomarkers, cognitive
characteristics, and lifestyle factors that influence the de-
velopment of symptomatic AD [3]. Finally, NACC,
established in 1999, maintains a large relational database
of standardized clinical and neuropathological research
data collected from AD centers across the USA [29].
The MRI scans used in this study from the ADNI

dataset are from the baseline visit. For a subset of the
ADNI participants (n = 151), both 1.5-T and 3-T scans
taken at the same study visit were available. Scanning on
ADNI focused on consistent longitudinal structural im-
aging on 1.5-T scanners using T1-weighted sequences,
and a group of subjects were also scanned using the
same protocol on 3-T scanners. For each scanning se-
quence (MP-RAGE), the geometry defining the field of
view at reconstructed resolution was 208 × 240 × 256
mm3 at 1 × 1 × 1 mm3. The timing parameters included
TE =min full echo, TR = 2300, and T1 = 900, and the ap-
proximate runtime was 6.2 min. These scans from the
ADNI data were primarily used for GAN model develop-
ment. The remaining participants from the ADNI, AIBL,
and NACC studies had 1.5-T MRI scans available and
were primarily used for FCN model development. Note
that the AIBL study also used an imaging protocol simi-
lar to the ADNI study. However, for the NACC study, a
single protocol was not available as it is a collection of
scans from several AD centers.
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Image registration and data normalization
We first applied a data preprocessing pipeline on raw
MRI scans. The pipeline consecutively performs linear
image registration, intensity normalization, background
removal, and outlier clipping on the MRIs, as described
below.
We used the linear registration tool from the FSL

package (University of Oxford, UK) to register raw MRIs
based on the MNI152 template (ICBM 2009c Nonlinear
Symmetric template, McGill University, Canada). All the
1.5-T MRIs were registered to the MNI template and
the 3-T MRIs available on the same subjects were co-
registered with the registered 1.5-T MRIs. Since linear
registration was used, the registered images were auto-
matically resized to match the head size of the MNI
template. We then applied z-score intensity
normalization on all the voxels of the whole brain vol-
ume so that the mean and the standard deviation values
of all voxels within an MRI were 0 and 1, respectively.
We then removed the background noise by setting all

background voxels to the value of − 1. A depth-first
search (DFS) algorithm was implemented to achieve the
goal of finding background regions. The DFS algorithm
expanded the search volume from initial corner loca-
tions into inner regions until the scalp fat signal was en-
countered which could be distinguished by its high
intensity. A threshold value was used to separate the sig-
nal of the scalp fat from the background and conse-
quently prohibited the search region leaking into the
brain. Lastly, to eliminate outlier voxels with high inten-
sity, we clipped every voxel to the range [− 1, 2.5], by
setting any voxel with intensity lower than − 1 to value
− 1, and any voxel with intensity higher than 2.5 to 2.5.

Deep learning framework
Original 1.5-T scans from the ADNI data on individ-
uals who underwent both 1.5-T and 3-T

scanning were fed into the generator that created im-
ages, and the discriminator was used to compare the
generated images (3T*) with the original 3-T images.
To note, the terms “original 1.5T” and “original 3T”
refer to the processed original MRIs and the term
“generated” images or scans refer to the ones gener-
ated by the GAN model. At the same time, a fully
convolutional network (FCN) was trained using the
generated 3-T* images to discriminate AD cases with
the ones who had normal cognition (NC). MRIs from
subjects with MCI used for the GAN training were
not utilized in the FCN training since our current
FCN model only performed binary classification task
between AD and NC. The goal was to find a mapping
function from 1.5-T to 3-T images for the same sub-
ject. The approach to creating this mapping function
is similar to residual learning, where the outcome of
the generator is a “transformation mask,” which at-
tempts to approximate the difference between 1.5-T
and 3-T images. When this mask is added to a 1.5-T
scan, it is expected to generate an image (3 T*), which
has the same or better image quality and leads to a
more accurate prediction of AD status. While the
generator is creating a transformation mask, the dis-
criminator is attempting to distinguish between the
generated 3-T* image and the original 3-T image in
an adversarial fashion. Concomitantly, the FCN model
is attempting to distinguish between AD and NC
cases. In essence, both the GAN and the FCN model
training was performed simultaneously while minimiz-
ing the GAN and classifier losses (Fig. 1). This was
achieved by allowing the gradient calculated from the
FCN classification loss to propagate back to the gen-
erator to implicitly convey the disease-related infor-
mation to the generator. As a result, the classification
loss that was propagated provided a momentum for
the generator to generate images that contributed to

Table 1 Study population and characteristics

ADNI 1.5 T ADNI 3 T NACC AIBL

Diagnosis NC MCI AD NC MCI AD NC AD NC AD

Number of cases 229 69 188 47 69 35 356 209 93 14

Age (median + range) 76 [60, 90] 76 [55,
88]

76 [55, 91] 75 [70–
86]

76 [55,
88]

72 [57,
89]

74 [56, 94] 77 [55, 95] 71 [61,
86]

73 [58,
82]

Gender, male
(percentage)

119
(51.96%)

39
(56.52%)

101
(53.72%)

18
(38.29%)

39
(56.52%)

12
(34.29%)

126
(35.39%)

95
(45.45%)

48
(51.61%)

6
(42.86%)

Education (median +
range)

16 [6, 20] 16 [6, 20] 16 [4, 20] 16 [7, 20] 16 [6, 20] 14 [7, 20] 16 [0, 22] 14.5 [2, 24] N.A. N.A.

APOE+ (percentage) 61
(26.64%)

33
(47.83%)

124
(65.96%)

13
(27.66%)

33
(47.83%)

24
(68.75%)

102
(28.65%)

112
(53.59%)

1 (1.01%) 1 (7.17%)

MMSE (median + range) 29 [25, 30] 26 [24,
30]

23.5 [18,
28]

30 [26,
30]

26 [24,
30]

23 [20,
27]

29 [20, 30] 22 [0, 30] 29 [25,
30]

18 [6, 22]

Three independent datasets including (a) the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, (b) the Australian Imaging, Biomarker & Lifestyle Flagship
Study of Ageing (AIBL), and (c) the National Alzheimer’s Coordinating Center (NACC) were used for this study
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lower cross-entropy loss and thus facilitated better
image classification.
The generator of the GAN model consists of three 3D

convolutional blocks in which each convolutional oper-
ation was followed by batch normalization and rectified
linear unit (ReLu) activation. In each convolution layer,
the stride and kernel size were set at 1 and 3, respectively,
and padding as 2, 0, and 1, to guarantee the output from
the generator to have the same size as input so that we
could directly add the transformation mask on the 1.5-T
scan. The discriminator of the GAN model is fully convo-
lutional, consisted of 5 convolutional blocks in which 3D
convolution operations were followed by batch
normalization and LeakyReLu activation. The model was
trained with losses from the discriminator and the FCN
classifier, as well as an additional L1-norm loss calculated
between the original 3-T image and the generated 3-T*
image. More details are described in the supplement. The
FCN model was trained to predict AD status using the
generated images (3 T*) as inputs. The NINCDS-ADRDA
criterion was used to define the AD status [30].
We used patch-wise training for both the GAN and

the FCN models. The training process using this strategy
was less computationally intensive and allowed us to use
neural networks with larger capacity given a total mem-
ory budget. Specifically, we randomly sampled patches
of size 47 × 47 × 47 from the whole volume as inputs to
the deep learning framework. Patches from the 1.5-T
scans were sent into the generator, and the discriminator
then attempted to differentiate between the 3-T* and 3-

T patches. The FCN model then used the 3-T* patches
as input to predict AD status. With the strategy of ran-
domly sampling patches over the whole volume, a de-
gree of data augmentation was achieved because the
model was trained with more variance of the inputs
sampled from various locations. Similar FCN frame-
works have been used recently to generate high perform-
ance AD classification models [31].
For comparison, we trained another FCN model using

1.5-T scans of the same individuals to predict AD status.
We also constructed another deep learning architecture
where the GAN model was trained independently by
backpropagating just the GAN loss (Figure S1a), and the
FCN model was trained by backpropagating just the
classifier loss (Figure S1b). Note that even for this case,
the GAN model used the 1.5-T and 3-T scans, whereas
the FCN model used the generated images from the
GAN as inputs to predict the AD status. For the sake of
presentation, we denote this GAN model as simpleGAN
and the FCN model as simpleFCN.

Quality metrics
We used signal to noise ratio (SNR) as well as no-
reference algorithms including Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [32], and
Natural Image Quality Evaluator (NIQE) [33], to com-
pare the differences between the original scans and gen-
erated images. When evaluating the image quality, we
retrieved the center slice in each scan within the brain
and then calculated average over this slice for each case.

Fig. 1 Schematic of the overall deep learning strategy. The generative adversarial network (GAN) uses 1.5-T and 3-T scans of the same individual
taken at the same time to generate images (3 T*). The fully convolutional network (FCN) model uses the 3-T* images to predict Alzheimer’s
disease (AD) status. Both the GAN and FCN models were trained simultaneously by backpropagating the losses from the GAN and the
FCN models
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For SNR, we computed the average values of pixel
intensity and divided it by its standard deviation.
BRISQUE focuses on quantifying spatial distortion,
such as ringing, blur, or blocking, from natural im-
ages. Certain regular statistical properties of natural
images could be influenced by the presence of distor-
tions. The BRISQUE evaluator was developed by
learning the difference between original natural im-
ages and distorted images using the LIVE IQA data-
base [34, 35]. NIQE is also a no-reference evaluator,
which quantifies image quality according to the level
of distortions. The difference of NIQE compared with
BRISQUE is that NIQE does not require distorted im-
ages as a prior and thus could learn only from undis-
torted images. Lower BRISQUE and NIQE scores
indicate better image quality.

Data partitioning and computing infrastructure
The models (GAN and simpleGAN) were constructed
on a subgroup of ADNI data (n = 151), which con-
tained both 1.5-T and 3-T scans from the same indi-
viduals taken at the same time. This subgroup was
randomly split into training, validation, and testing in
the ratio of 3:1:1 (Figure S2). The GAN models were
constructed on the training part (60%) of the 151
cases, and they were saved at the instance when SNR
on the validation part of the data (20%) was the high-
est. Image quality of the generated 3-T* images
was evaluated on the remaining 20% of the subgroup
as well as on the remaining cases in the ADNI data
and two external datasets (AIBL & NACC) (Table 1).
We must note that the GAN and FCN models were
constructed simultaneously. During the GAN model
training, the generated 3-T* patches sampled from
AD and NC cases were fed into the FCN model to
perform AD versus NC classification. Considering the
limited number of AD and NC cases from the sub-
group who went through both 1.5-T and 3-T MRI
scans, we combined all the NC and AD cases from
this subgroup along with a randomly selected sub-
group from the remaining AD and NC subjects from
the ADNI dataset to train the FCN model. In total,
251 subjects were used for FCN model training. The
remaining AD and NC subjects from the ADNI data-
set (n = 166) were randomly and equally split for
FCN model validation and testing. The FCN model
was saved when the classification accuracy was high-
est on the validation dataset. The classification per-
formance of the trained FCN model was evaluated on
the ADNI testing subset and two external datasets
(AIBL and NACC) (Table 1). For comparison, we also
trained a separate FCN model using the correspond-
ing 1.5-T scans to predict AD status. Specifically, the
cases used for training, validation, and testing of the

1.5-T-based FCN model were the same as those used
for the FCN model based on the 3-T* images.
We developed the deep learning framework using

PyTorch 1.7.0. Model development was performed on a
computing workstation containing a GeForce RTX 2080
Ti (NVIDIA, Santa Clara, CA) GPU card with 11 Gb
memory. Model training took approximately 9 h and
testing on a new case was almost an instantaneous
process taking a few seconds on the same workstation.

Performance metrics for classification
We generated sensitivity-specificity (SS) and precision-
recall (PR) curves based on model predictions on the
ADNI test data as well as on the other independent
datasets (AIBL and NACC). For each SS and PR curve,
we computed the area under curve (AUC) values. Add-
itionally, we computed sensitivity, specificity, F1-score,
and Matthews correlation coefficient (MCC) on each set
of model predictions. Both the 1.5 T- and 3 T*-based
classification models were trained 25 times with various
random seeds and 95% confidence intervals were
generated.

Statistical analysis
To evaluate the mean difference in image quality gener-
ated by the GAN model, we performed analysis of vari-
ance (ANOVA) on the ADNI test data. Image quality
was assessed using SNR, BRISQUE, and NIQE. Specific
group differences between 1.5-T, 3-T, and 3-T* images
were evaluated using the post hoc Tukey test (Table S1).
The effect of age, education, gender, MMSE scores,
ApoE4 status, and type of scanner on SNR, BRISQUE
and NIQE were evaluated using a stepwise forward se-
lection process using the “GLMSELECT” function (SAS
Software) followed by analysis of covariance (ANCOVA)
(Table S2). Lastly, we used the t-test to assess whether
the mean image quality of the 1.5-T group was different
from the 3-T* group in the NACC and AIBL datasets.

Results
Volumetric patch-level training on the 1.5-T and 3-T
scans allowed training of volumetric transformation
mask, which then resulted in the generation of 3-T*
volumetric images. For ease of visualization, we se-
lected the center slice of a single subject and re-
trieved a two-dimensional transformation mask from
the learned volume and compared both the original
and generated images (Fig. 2). This figure demon-
strates that captured differences between the 1.5-T
and 3-T* images were subtle and distributed through-
out the region. When metrics such as SNR were used,
there was a 9.6% improvement (1.31 to 1.45), on the
mean image quality on the ADNI test data between
the 1.5-T and 3-T* images. We also found that mean
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SNR improved by about 11.1% (1.26 to 1.40) and
11.7% (1.28 to 1.43) on the AIBL and NACC data,
respectively.
Absolute measures of image quality using perceptual

quality metrics provided more insight on the differences
between 1.5-T and 3-T* images. When BRISQUE metric
was used, there was about 8.3% improvement in the
mean image quality on the ADNI test data (49.06 to
44.97), about 10.0% improvement in the mean image
quality on the AIBL data (44.91 to 40.44), and about
9.0% mean image quality improvement on the NACC
data (47.79 to 43.48). Note that lower BRISQUE score
indicates better quality. When NIQE metric was used to
compare images, there was 16.8% improvement in the
mean image quality on the ADNI test data (7.33 to 6.1),
14.3% improvement in the mean image quality on the
AIBL data (7.21 to 6.18), and 16.3% mean image quality
improvement on the NACC data (7.99 to 6.69). Similar
to the BRISQUE metric, lower NIQE score indicates bet-
ter quality. These no-reference metrics provided an ob-
jective way to evaluate the quality of the generated
images on different cohorts (AIBL and NACC), which
then grounded our hypothesis that the GAN model can
learn from images of multiple magnetic field strengths
to improve image quality.
In order to determine if there was an overall difference

in the mean quality of images produced by the GAN
model, we performed ANOVA for the SNR, BRISQUE,
and NIQE metrics computed on the ADNI test data

(Fig. 3 and Figure S3). We found a significant overall dif-
ference in image quality between the 1.5-T, 3-T, and 3-
T* groups using SNR (F = 229.66, p < 0.0001), BRISQUE
(F = 10.80, p < 0.0001), and NIQE (F = 27.95, p < 0.0001).
To identify the between-group differences for the SNR,
BRISQUE, and NIQE metrics, we used the Tukey’s post
hoc procedure (Table S1). We found that the 3-T* group
had significantly better image quality compared to 1.5-T
scans across all three image quality metrics, SNR (p <
0.0001), BRISQUE (p < 0.0001), and NIQE (p < 0.0001).
On the other hand, the mean image quality in the 3 T*
category was significantly better than the 3-T scans on
the SNR metric (p < 0.0001), but not on the BRISQUE
(p = 0.1074) and NIQE (p = 0.82) metrics.
A stepwise forward selection process using the

“GLMSELECT” function (SAS Software) was used to
evaluate the effect of age, education, gender, MMSE
scores, ApoE4 status, and type of scanner on SNR, BRIS-
QUE, and NIQE (Table S2). For SNR, “age” was statisti-
cally significant (p = 0.0003). For BRISQUE, “years of
education” (p = 0.04) and “scanner type” (p = 0.003) were
statistically significant, and for NIQE, “age” (p = 0.001),
“years of education” (p = 0.01), and “scanner type” (p =
0.006) were statistically significant. Lastly, an analysis of
covariance was performed by adjusting for the above-
mentioned covariates. The mean difference in image
quality assessed by SNR in both the 1.5-T and 3-T
groups was 0.15 units lower than the 3-T* scans (p <
0.0001) after adjusting for age. After adjusting for years

Fig. 2 Original and generated images and corresponding transformation masks. Axial, sagittal, and coronal views of a single subject are shown in
the first, second, and third columns, respectively. The first row corresponds to the original 1.5-T slices, the second row corresponds to the
generated images (3 T*), and the third row corresponds to the difference between 1.5-T and 3-T* images, denoted as the transformation mask.
We also showed the same zoomed-in region from 1.5-T and 3-T* images and the transformation mask in the fourth column to reveal the
difference between 1.5-T and 3-T* images. Additionally, we presented histograms of the voxel values within the zoomed-in region in the
fifth column
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of education, the mean difference in image quality be-
tween 1.5-T and 3-T* images assessed by the BRISQUE
metric was 4.53 (p < 0.0001) and between 3-T* and 3-T
images was 2.0 (p = 0.04). Lastly, after adjusting for age,
years of education, and type of scanner, the mean differ-
ence in image quality assessed by NIQE between 1.5-T
and 3-T* images was 1.16 units (p < 0.0001); however,
the association was not significant between 3-T* and 3-
T images (p = 0.54).
The generated images led to consistent, high AD

classification performance across the external data-
sets, at least as demonstrated by area under the
sensitivity-specificity and the precision-recall curves
(Fig. 4a, b). The FCN model based on the 3-T* im-
ages demonstrated improved performance on both
the AIBL and NACC datasets, using most of the
computed performance metrics (Table 2a and b). It
is worth noting that for MCC, which is generally
regarded as a balanced measure and can be used
even if the classes are of different sizes, the mean

MCC value increased by 19.6% on the AIBL dataset
(0.5757 to 0.6884) and 9.2% on the NACC dataset
(0.6032 to 0.6585), respectively. F1-score, which is
generally used as a weighted score of the model’s
performance, also increased by 18.8% on the AIBL
dataset (0.6126 to 0.7276) and 6.4% on the NACC
data (0.7301 to 0.7768). The 95% confidence inter-
vals for the FCN models show that the model pre-
dictions were fairly consistent across different runs
and varied between the FCN models based on 1.5-T
and 3-T* images, respectively (Table 3). Of note, the
FCN model based on the 3-T* images performed
better than the simpleFCN on the ADNI test and
NACC datasets and was relatively similar on the
AIBL dataset, as demonstrated by the area under the
SS and PR curves (Figure S4a & b). In general, the
simpleGAN-based 3-T* images had improved quality
compared to 1.5-T images (Figures S5 & S6, Table
S3). More details on these findings can be found in
the supplement.

Fig. 3 Image quality analysis. Metrics such as SNR as well as no-reference algorithms including BRISQUE and NIQE were used to evaluate the
quality of the generated images (3 T*) and compare them with the quality of the original scans (1.5 T and 3 T). The metrics were computed
independently on the MRI scans from each study cohort (ADNI-test (a–c), NACC (d–f), AIBL (g–i)). Lower value of the metrics indicates improved
quality. The symbol “*” indicates p < 0.001 and “**” indicates p < 0.0001
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Discussion
Our deep learning pipeline involved training of a GAN
model to learn from 1.5-T and 3-T scans obtained from
the same subjects at the same time, and an FCN model
to simultaneously predict AD status that used the gener-
ated 3-T* images from the GAN model. Simultaneous

minimization of losses from the GAN and the FCN
models enabled us to achieve improvements in MR
image quality and AD classification performance. More-
over, volumetric patch-level training of the GAN and
the FCN models turned out to be computationally effi-
cient, where the size of the patches was the same as the

Fig. 4 Performance of the FCN models. a Sensitivity-specificity (SS) and b precision-recall (PR) curves comparing the FCN models predicting AD
status. One FCN model was developed using the 1.5-T scans and the other using the 3-T* images. Model performance is shown on all three
datasets (ADNI test, AIBL, and NACC)

Table 2 Performance of the FCN models

(a)

1.5 T Accuracy Sensitivity Specificity F-1 MCC

ADNI test 0.8398 ± 0.0238 0.7363 ± 0.0514 0.9209 ± 0.0385 0.7972 ± 0.0325 0.6766 ± 0.0492

AIBL 0.8873 ± 0.0647 0.6309 ± 0.1393 0.9259 ± 0.0874 0.6126 ± 0.1016 0.5757 ± 0.1086

NACC 0.8157 ± 0.0224 0.6739 ± 0.0605 0.8989 ± 0.0616 0.7301 ± 0.0221 0.6032 ± 0.0425

(b)

3T* Accuracy Sensitivity Specificity F-1 MCC

ADNI test 0.8210 ± 0.0143 0.7411 ± 0.0312 0.8895 ± 0.0114 0.7923 ± 0.0195 0.6416 ± 0.0280

AIBL 0.9293 ± 0.0132 0.7143 ± 0.0000 0.9617 ± 0.0152 0.7276 ± 0.0365 0.6884 ± 0.0449

NACC 0.8429 ± 0.0069 0.7393 ± 0.0180 0.9037 ± 0.0134 0.7768 ± 0.0096 0.6585 ± 0.0149

Accuracy, sensitivity, specificity, F1-score, and Matthew’s correlation coefficient are computed for the FCN models that used (a) 1.5-T scans and (b) 3-T*
images, respectively
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receptive field of the FCN model. Importantly, access to
1.5-T and 3-T scans on the same subjects taken at the
same time was crucial to develop 3-T* images, without
the influence of potential confounding factors such as
scan timing. Also, both the AIBL and NACC datasets
served as good, independent datasets for model valid-
ation, allowing use of a similar criterion for subject se-
lection on these cohorts.
There is a putative link between MRI scans with high

quality (defined using SNR, etc.) obtained from latest
instrument-level advancements and their ability to better
delineate structural aspects that manifest in various dis-
eases. It is appealing to embrace MR images of high
SNR to improve detection of structural changes in the
human brain. This seemingly advantageous technological
progress poses a conundrum—models created using MR
images at early time points using older technology may
not be sufficiently accurate in terms of predicting AD
status. Further, longitudinal changes determined from
1.5-T and 3-T scans due to neurodegeneration cannot
be confounded by increased sensitivity due to higher
magnet strength. This becomes more important in the
case of aging individuals who could benefit from a more
accurate assessment of cognitive status early in their
lives. While there is not yet any available drug treatment
for treating cognitive abnormalities with insidious onset
such as AD, research indicates that delaying onset will
cut an individual’s risk for diagnosis [36, 37]. Using the
GAN framework and MR images of different MFS, we
developed a model to generate images of improved qual-
ity and predict AD status of individuals with greater
accuracy.

Study limitations
Our study has a few limitations. First, the sample size
used for GAN model training was small (n = 151), as
only a limited number of cases had both 1.5-T and 3-T
imaging done at the same time. It is possible to generate

a more robust GAN model if such data is available on a
larger number of cases. Both the GAN and FCN models
were designed to have specific architectures. More opti-
mized architectures can be constructed and this could
alter the performance of the models. We used well-
known no-reference algorithms to evaluate image quality
on the images, and additional quality metrics could be
explored. Even though the BRISQUE evaluator was not
designed to evaluate medical images, we still used it to
explore whether distortion features from natural images
could statistically distinguish any subtle differences be-
tween MRIs collected with various magnetic field
strengths. We observed that the image quality of the
generated 3-T* scans statistically outperformed that of
the original 1.5-T scans. Nevertheless, the ability of the
GAN model to generate images of similar quality to that
of the original scans was consistent across these metrics,
and the enhanced AD classification performance was
evident, as evaluated using independent test data. In fu-
ture, we will expand our classification task to include
MCI cases and further stratify MCI subjects into those
who remain stable from the ones who convert to
dementia.

Conclusions
Our approach to produce high AD classification per-
formance models using a deep learning framework could
transform the way MRI scans are utilized in AD re-
search. Our study implication is that it is possible to
generate images of enhanced quality on disease cohorts
that have previously used the 1.5-T scanners, and in
those centers who continue to rely on 1.5-T scanners.
This would allow us to reconstruct the earliest phases of
AD, and build a more accurate model of predicting cog-
nitive status than would otherwise be possible using data
from 1.5-T scanners alone. Our proposed deep learning
framework can also be extended to process other med-
ical imaging datasets and organ systems when relevant
data is available for model development.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13195-021-00797-5.

Additional file 1: Figure S1. (A) Simple GAN architecture with a
generator and a discriminator. (B) Simple FCN classification architecture
for prediction of AD status. Figure S2. Number of cases from the ADNI
cohort used for GAN and FCN model development. The cases covered
by the black arrow indicate the ones used for the GAN model
development and the cases covered by the red arrow indicate the ones
used for the FCN model development. Figure S3. ANCOVA analysis to
assess the mean image quality using SNR, BRISQUE and NIQE in the
ADNI-training (a-c) and ADNI-validation (d-f) data. Table S1. Specific
group differences in magnetic field strength (1.5T, 3T, 3T*) evaluated
using Tukey's post hoc procedure across the image quality measures
SNR, BRISQUE and NIQE in the ADNI-training, testing and validation data.
Table S2. ANOVA analysis of AUCs from the ROC curves on the gender,

Table 3 Confidence intervals of model performance

1.5 T 3 T* 3 T* − 1.5 T

(a)

ADNI test [0.8968, 0.9172] [0.9304, 0.9336] [0.0203, 0.0297]

AIBL [0.9258, 0.9422] [0.9373, 0.9427] [0.0021, 0.0097]

NACC [0.8590, 0.8810] [0.9058, 0.9082] [0.0314, 0.0412]

(b)

ADNI test [0.9022, 0.9218] [0.9324, 0.9356] [0.0175, 0.0265]

AIBL [0.7347, 0.7833] [0.7467, 0.7593] [−0.0170, 0.0051]

NACC [0.8268, 0.8512] [0.8768, 0.8792] [0.0334, 0.0443]

(a) 95% confidence intervals of the SS curves for 1.5-T-based model, 3-T*-
based model, and difference of AUCs between 3-T* and 1.5-T-based models.
(b) 95% confidence intervals of PR curves for 1.5-T-based model, 3-T*-based
model and difference of AUCs between 3-T* and 1.5-T-based models
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age and scanner variables to demonstrate whether the AD classification
performance differed on various groups. Figure S4. Performance of the
FCN classifier based on the images generated using the simpleGAN archi-
tecture (Figure S1). (A) Sensitivity-specificity and (B) precision-recall curves
are shown on the ADNI test, AIBL and NACC datasets, respectively. Fig-
ure S5. ANCOVA analysis to assess the mean image quality using SNR,
BRISQUE and NIQE for simpleGAN model in the ADNI-test (a-c) and t-test
results of NACC (d-f) and AIBL (g-i) data, respectively. Figure S6. ANCOVA
analysis to assess the mean image quality using SNR, BRISQUE and NIQE
for simpleGAN model in the ADNI-training (a-c) and ADNI-validation (d-f)
data. The effect of independent variables such as age, education, MMSE
scores, and type of scanner was evaluated using a stepwise forward se-
lection process and models were adjusted accordingly. Table S3. Specific
group differences in magnetic field strength (1.5T, 3T, 3T*) were evaluated
using Tukey's post hoc procedure across the image quality measures
SNR, BRISQUE and NIQE for the simpleGAN model in the ADNI-training,
testing and validation data.
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